overlapping mutliprocessor - Übersetzung nach arabisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

overlapping mutliprocessor - Übersetzung nach arabisch

Overlapping subproblem

overlapping mutliprocessor      
معالج متعدد تراكبي
Machine language         
SET OF INSTRUCTIONS EXECUTED DIRECTLY BY A COMPUTER'S CENTRAL PROCESSING UNIT (CPU)
Native code; Machine instruction; Machine Code; Machine language; Machine Language; Native applications; Native execution; Machine instruction (computing); Program machine code; Machine instructions; CPU instruction; CPU instructions; Opcode-level programming; Opcode level; Overlapping instructions; Overlapping instruction; Overlapping machine instructions; Overlapping machine instruction; Overlapping opcodes; Overlapping opcode; Overlapping opcode sequences; Overlapping opcode sequence; Overlapping op-codes; Overlapping op-code; Overlapping op-code sequences; Overlapping op-code sequence; Superpositioned code; Code superposition; Instruction overlapping; Code overlapping; Instruction scission; Opcode overlapping; Jump into the middle of instruction; Instruction overlapping technique; Jump in the middle; Jump into the middle of an instruction; Jumping into the middle of an instruction; Jumping into the middle of instruction; Code overlap; Overlapping code; Overlapped instruction encoding; Overlapped instruction; Overlapped instructions; Semantic code overlapping; Semantic overlapping (computing); Physical overlapping (computing); Physical code overlapping; Overlapped code; Code interleaving; Code outlining; Overlapping instruction sequences; Overlapping instruction sequence; Code-overlapping technique
لغة الآلة ، أسلوب الآلة
machine language         
SET OF INSTRUCTIONS EXECUTED DIRECTLY BY A COMPUTER'S CENTRAL PROCESSING UNIT (CPU)
Native code; Machine instruction; Machine Code; Machine language; Machine Language; Native applications; Native execution; Machine instruction (computing); Program machine code; Machine instructions; CPU instruction; CPU instructions; Opcode-level programming; Opcode level; Overlapping instructions; Overlapping instruction; Overlapping machine instructions; Overlapping machine instruction; Overlapping opcodes; Overlapping opcode; Overlapping opcode sequences; Overlapping opcode sequence; Overlapping op-codes; Overlapping op-code; Overlapping op-code sequences; Overlapping op-code sequence; Superpositioned code; Code superposition; Instruction overlapping; Code overlapping; Instruction scission; Opcode overlapping; Jump into the middle of instruction; Instruction overlapping technique; Jump in the middle; Jump into the middle of an instruction; Jumping into the middle of an instruction; Jumping into the middle of instruction; Code overlap; Overlapping code; Overlapped instruction encoding; Overlapped instruction; Overlapped instructions; Semantic code overlapping; Semantic overlapping (computing); Physical overlapping (computing); Physical code overlapping; Overlapped code; Code interleaving; Code outlining; Overlapping instruction sequences; Overlapping instruction sequence; Code-overlapping technique
لغة الآلة .

Definition

machine code
Machine code is a way of expressing instructions and information in the form of numbers which can be understood by a computer or microchip. (COMPUTING)
N-UNCOUNT

Wikipedia

Overlapping subproblems

In computer science, a problem is said to have overlapping subproblems if the problem can be broken down into subproblems which are reused several times or a recursive algorithm for the problem solves the same subproblem over and over rather than always generating new subproblems.

For example, the problem of computing the Fibonacci sequence exhibits overlapping subproblems. The problem of computing the nth Fibonacci number F(n), can be broken down into the subproblems of computing F(n − 1) and F(n − 2), and then adding the two. The subproblem of computing F(n − 1) can itself be broken down into a subproblem that involves computing F(n − 2). Therefore, the computation of F(n − 2) is reused, and the Fibonacci sequence thus exhibits overlapping subproblems.

A naive recursive approach to such a problem generally fails due to an exponential complexity. If the problem also shares an optimal substructure property, dynamic programming is a good way to work it out.